Joint Institute for Nuclear Research

Welcome to Dubna

Baksan School on AstroParticle Physics April 17, 2019

Dmitry V.Naumov

Dubna

Moscow

Canal

Volga River

> Sister River

Pubna River

Snt"Soyuz-Chernobyl'-Sestrorechenskoye"
 CHT"Союз-Чернобыль-сестрореченское"

A magic island

Pubna. JINR. PLNP Campus

Dubna. JINR. VBLHE Campus

JINR

- New elements 102, {103, 104, 105(Db), 107}, 114, 115, 116, 117, 118
- Hypothesis of neutrino oscillations (1957). {NP: 2015}
- Discovery of new particle: anti-sigma-minus hyperon
- And many other discoveries

JOINT INSTITUTE or NUCLEAR RESEARCH

Science bringing nations together

D U B N A | 1956

JINR

- Employed ~ 5000: 1200 scientists, 2000 - engineers
- 7 labs. Each as a big institute
- 18 countries member-states and
 6 associated
- 1500 science papers/year
- Collaboration with 800 scientific centers in 64 countries
- I, 5 billions USD. Budget for 2017-2023

- Laboratory of high energy physics
- Laboratory of nuclear problems
- Laboratory of nuclear reactions
- Laboratory of neutron physics
- Laboratory of information technologies
- Laboratory of theoretical physics
- Laboratory of radiation biology

History

- May, 7 1946. First discussion of «construction of a power cyclotron» at special committee of the government
- 18 August 1946. Soviet government approved the proposal of Academician Igor Kurchatov to construct in USSR "the installation M" for fundamental studies in nuclear physics.
- 14 December 1949. The 480 MeV proton synchrocyclotron started operation at the <u>Hydrotechnical</u> Laboratory in Dubna, the most powerful accelerator in the world at that time.
- Electrophysical lab lead by Veksler worked on proton accelerator with IO GeV energy
- 26 March 1956. On the basis of two labs JINR founded.

Synchrocyclotron of PLNP JINR

Synchrocyclotron. 680 MeV (1953)

M.G.Mecheriakov

Synchrophasotron. VBLHEP JINR

LEAST COLUMN AND ADDRESS OF TAXABLE PARTY OF TAXABLE PART

Synchrophasotron. VBLHEP JINR

Two facts

Half of discoveries in nuclear physics belongs to JINR (37)

Is belongs to PLNP JINR

VBLHEP

Veksler and Baldin Laboratory of High Energy Physics

http://lhe.jinr.ru/index_rus.html

NICA - Nuclotron-based Ion Collider fAcility Flagship project of VBLHEP and JINR Mega-Science project of Russia

Observables Sensitive to phase transitions

- Particle's yields and spectra
- Event-by-event fluctuations of multiplicity and pT
- Restoration of chiral symmetry -> modification of hadronic spectral functions
- Strangeness production enhancement

Строительство коллайдера NICA http://nucloweb.jinr.ru/nucloserv/205corp.htm

FLNR Flerov Laboratory of Nuclear Reactions

 Nuclei become less stable with increasing Z and N

 Shell model —> new stability island with Z=114 and N=184

Elements synthesized in Dubna

Z=114-

The exact location of stability is not yet found

The trend of increasing stability with N—> 184 is observed

SHE: Super-Heavy Elements factory

кому Ruthenium. Moscovoium. Dubnium. Oganesson

Куда _____

FLNP Frank Laboratory of Neutron Physics

http://flnph.jinr.ru/en/

Impulse fast reactor (IBR)

- End of 1955. Idea by D.I Blokhintsev during a seminar in Obninsk
- Mid of 1956. P.I. Blokhintsev was suggested to head JINR. His condition was build IBR
 November 1960. I.M. Frank reported first results from newly constructed IBR.
- ...
 2010. Upgraded IBR-2

R&D for new most powerful neutron source

Wide research program

- Study neutron
- Study structure and dynamics of condensed matter
 - Crystals, nanosystems
 - Complex liquids, polymers, rock
 - Molecular biology and pharmacology
- Applied research

Neutron radiography

 Organic structure is better seen with help of neutrons

 Gamma is sensitive to density only

Effective for paleonthology

Search for water on Mars

- Mars Odyssey 2001 is on Mars orbit from 2002.
- Neutron detector HEND (with help of JINR) is onboard.
- Source and detector of neutrons DAN (JINR) is onboard of Mars rover «Curiosity Rover»

Laboratory of information technologies

http://lit.jinr.ru

Computing cluster

- Included in computing network
 GRID
- Used by leading centers: CERN, IHEP, Fermilab...
- More than 6000 CPU units
- Heterogeneous cluster (GPU)
- 4.2 petabytes of disk space
- 5 petabytes on robotic tapes
- Support 24/7

BLTP

Bogoliubov Laboratory of Theoretical Physics

http://theor.jinr.ru/lab_rus.shtml

Theoretical studies

- The largest theory lab
- Theory support of experiments : NICA, SHE, neutrino physics, etc.
- Collaboration with: CER, DESY, KEK, Fermilab and many others
- Fellows from 20 countries, 1/3 are young fellows
- Research in:
 - Condense matter
 - Fundamental interactions
 - Elementary particles
 - Nuclear physics
 - Modern math physics

Power₁

LRB Laboratory of Radiation Biology

http://lrb.jinr.ru/new/olab/olab_en.shtml

DINP Dzhelepov Laboratory of Nuclear Problems

http://dlnp.jinr.ru
Structure of DLNP

Particle Physics

- Accelerator Technologies
- Neutrino Physics & Astrophysics
- Radiation Medicine, Genetics, Molecular
 Genetics
- Radiochemistry & Nuclear Spectroscopy
- IT, design office, workshop, services, etc
 Education & Outreach
- © Euucation & Vutreach
- about 650 employees
- among them about 500 scientific staff

SCEINCE & TECHNOLOGIES

Particle Physics

- ATLAS
- Mu2e, g-2
- o COMET
- BES-III
- PANDA

Neutrino Physics & Astrophysics

- BAIKAL GVD
 Daya Bay/JUNO
- NOVA
- BOREXINO
 DANSS
- ø GERDA
- ø gemma/vgen
- SuperNEMO
- TUS/Nucleon/TAIGA
- EDELWEISS
 EDELWEISS

Technologies

- Precise Laser Metrology
- New semiconductor detectors
- Oltra cold temperatures

Underlined astrophysical experiments

SCEINCE & TECHNOLOGIES

Medicine & Molecular Genetics

- Proton Therapy
- Medical-biological studies
- Radiation genetics

Education & Outreach

- Schools, conference, seminars
- Web-site of PLNP, social networks
- Lecturing at MSU, MIPT, «Pubna» University and others

Bruno Pontecorvo worked in JINR (1950-1993) establishing a School of Neutrino Physics

Main objective: Astrophysical Catastrophes in the Universe Sources of ultra-high energy particles

We are made of star dust
 Modern stars are already of the third generation

Why Neutrino?

- Charged particles loose direction and energy
- Photons get absorbed
- Neutrino astronomy is possible because of weak interaction neutrino

There is no sunrise and sunset with neutrinos

https://www.youtube.com/watch?v=mu7lYTXP-hl

Image of Sun with Neutrinos by SuperKamiokande Credit: R.Svoboda, K.Gordan (LSU)

Short History of Neutrino Telescopes

M.A. Markov. 1960

«We propose to install detectors deep in a lake or in the sea and determine the direction of charged particles with the help of Cherenkov radiation». ICHEP, Rochester. p578

Short History of Neutrino Telescopes

1960 - M.Markov - main idea. 1976 - Discussions of DUMAND project 1980 - Start of works on construction of BAIKAL **Detector lead by G.V.Domogatsky** 1993 - NT-36 (36 OM) @BAIKAL 1996 - NT-96 (96 OM) 1997 - AMANDA B10 (302 OM) @SouthPole 1998 - NT-200 (192 OM) 2000 - AMANDA II (677 OM) 2005 - NT-200+ (228 OM) 2005 - IceCube (first string) 2010 - IceCube (last string) 2015 - BAIKAL GVD («Dubna» cluster)

J. Learned to C.Spiering: "Congratulations for winning the 3-string race!" (NT-36 vs TRIAD vs AMANDA)

4-string stage (1996)

BAIKAL Neutrino Telescope Pioneered the field

BAIKAL Neutrino Telescope Pioneered the field

DESY was a major collaborator in BAIKAL in 90's

BAIKAL Neutrino Telescope Pioneered the field

A new boost in BAIKAL Neutrino Telescope history: Discovery of UltraHigh energy Neutrinos by IceCube (2014) JINR major contribution to construction of cubic-km BAIKAL GVD

Why BAIKAL? Accurate determination of arrival direction in BAIKAL water

Light re-scattering in ice is large

The Plan

Main Goal 0 Point sources of UHE neutrino 3D Array of photo-sensors 0 Phase I: 0.4 km3 (by 2021) 0 Phase II: 1.5 km3 (by 2027) Installation site South Baikal 6 Depth 1.4 km 0 Distance from shore 3.5 km Requirements 0 Adjustable structure 0 Synchronization < Ins 0

Deployment status

	2015	2016	2017	2018	
Number of clusters	≤1	1	2	3	750 M 300 M Ostankino Tower (Moscow)
Number of OM	192	288	576	864	525 M 36 OM 91 M

The largest Neutrino Telescope in Northern hemisphere

Expedition 2019 Ongoing! The goals: Install two more clusters Repair part of cluster #3

Hello from Baikal. We are installing two new clusters

Two new clusters installed in 2019!

BAIKAL GVD Construction

Physics

Neutrino candidate

$E = 158 \text{ TeV}, \ \Theta = 59^{\circ}, \rho = 73 \text{ m}, \ z = -62 \text{ m}$

Neutrino Astronomy unveiled

The most romantic experiment ever

Women's day!

Way for lunch

Enjoy more at http://dlnp.jinr.ru/ru/bajkalskij-dnevnik/bajkalskij-dnevnik-dmitriya-naumova

Additional Materials

Baikal Optical Module (OM)

Sewage & Water supply

Plans OSITE

Rennovate Houses

Design view @ 106 km

Detector performance

Position of OMs

Acoustic system (few cm)

Time synchronization between OMs
 @same cluster &between clusters
 Laser

LED matrix

BAIKAL GVD in global context

Global Neutrino Network

Oct. 2013, Munich

Antares
Baikal
IceCube
KM3Net

http://www.globalneutrinonetwork.org/

Infrastructure upgrade

OM assembling hall @PLNP JINR

12 OM/day

JINR facilities

Nitrogen drying

2

NPO NPOEN
DAQ testing @INR

Long-term testing @JINR

OSITE

New data taking center

Purchased storage building @ Baikalsk

New shore lab

New living boxes

Transportation issues solved

11

敗日

